viernes, 19 de agosto de 2011

Foctorizacion de polinomios

FACTORIZACIÓN DE POLINOMIOS

Para factorizar polinomios hay varios métodos:

  1. Sacar factor común: Es aplicar la propiedad distributiva de la multiplicación respecto de la suma, Así, la propiedad distributiva dice:


Pues bien, si nos piden factorizar la expresión , basta aplicar la propiedad distributiva y decir que


Cuando nos piden sacar factor común o simplemente factorizar y hay coeficientes con factores comunes, se saca el máximo común divisor de dichos coeficientes. Por ejemplo, si nos piden factorizar la expresión , será

donde 6 es el máximo común divisor de 36, 12 y 18
Para comprobar si la factorización se ha hecho correctamente, basta efectuar la multiplicación, aplicando la propiedad distributiva de la parte derecha de la igualdad, y nos tiene que dar la parte izquierda.

Otro ejemplo: Factorizar

 ¡Atención a cuando sacamos un sumando completo!, dentro del paréntesis hay que poner un uno. Tener en cuenta que si hubiéramos puesto  y quiero comprobar si está bien, multiplico y me da  pero no  como me tendría que haber dado.
Sin embargo si efectúo

Otros ejemplos:


  1. Si se trata de una diferencia de cuadrados: Es igual a suma por diferencia.
Se basa en la siguiente fórmula


Pero aplicada al revés, o sea que si me dicen que factorice  escribo

Otros ejemplos de factorización por este método:


  1. Si se trata de un trinomio cuadrado perfecto: Es igual al cuadrado de un binomio
Se basa en las siguientes fórmulas

   y   

Así si nos dicen que factoricemos: , basta aplicar la fórmula anterior y escribir que


Otros ejemplos de factorización por este método:


  1. Si se trata de un trinomio de segundo grado: O sea un polinomio de este tipo
, siendo a, b y c números

Se iguala el trinomio a cero , se resuelve la ecuación , y si tiene dos soluciones distintas,  y se aplica la siguiente fórmula:

Veamos un ejemplo: Factorizar el polinomio
Igualamos a cero
Resolvemos la ecuación , y separando las dos soluciones , , y aplicando la fórmula, teniendo en cuenta que a=2


  1. Para cualquier polinomio que tenga raíces enteras se puede aplicar la regla de Ruffini: Decir que un polinomio tienes raíces enteras es encontrar valores de x números enteros que al sustituirlos en el polinomio nos da cero.

Si un polinomio de , por ejemplo, cuarto grado  tiene cuatro raíces enteras, , ,  y  se factoriza así:


Pero ¿cómo se obtienen las raíces?, por la regla de Ruffini

Ejemplo: Factorizar
Se aplica la regla de Ruffini, probando los divisores del término independiente, en este caso de 12. O sea que se prueba con 1, -1, 2, -2, 3, -3, 4, -4, 6, -6, 12 y –12

Probemos con uno
Se copian los coeficientes del polinomio:



1
-4
-1
16
-12




Y se escribe en una segunda línea el número uno





1
-4
-1
16
-12
1














El primer coeficiente se copia abajo en una tercera línea




1
-4
-1
16
-12
1






1







Se multiplica ese coeficiente, uno (1), por el número que estamos probando, en este caso también uno (1), o sea uno por uno = uno (1). Este uno se escribe debajo del siguiente coeficiente, o sea del –4




1
-4
-1
16
-12
1

1




1






Se suma –4+1=-3




1
-4
-1
16
-12
1

1




1
-3





Se multiplica –3 por 1=-3 y se escribe debajo del siguiente coeficiente, -1





1
-4
-1
16
-12
1

1
-3



1
-3





Se suma –3-1=-4 y así sucesivamente




1
-4
-1
16
-12
1

1
-3
-4
12

1
-3
-4
12
0


Como vemos la última suma ha dado cero. Eso quiere decir que uno es una raíz del polinomio y que nos sirve para factorizar.
Si hubiera dado distinto de cero habría que seguir probando los demás divisores de 12.
Los coeficientes que han quedado en la última fila, en realidad son los coeficientes del cociente de dividir el polinomio entre x-1, y la última suma es el resto de dicha división.
Si escribimos la relación fundamental de una división entera, o sea que
Dividendo=Divisor x Cociente+Resto

= =

De hecho ya hemos factorizado el polinomio, pero el segundo factor de tercer grado hay que intentar seguir factorizando, de nuevo por la regla de Ruffini.
Aplicando sucesivas veces esta regla queda:




1
-4
-1
16
-12
1

1
-3
-4
12

1
-3
-4
12
0
2

2
-2
-12


1
-1
-6
0

-2

-2
6



1
-3
0





Como las raíces son, 1, 2 y –2 y el último cociente es x-3
La factorización final es:

=

Si en las sucesivas pruebas no encontramos ningún resto cero, quiere decir que el polinomio no se puede factorizar dentro de los números reales.

EN RESUMEN

Muchas veces se pueden combinar estos cinco métodos. Según como sea el polinomio hay métodos que se pueden aplicar y otros que no. Se aconseja que se intenten aplicar los cinco métodos sucesivamente, sobre todo, si se puede sacar factor común se hace en primer lugar, y si luego en uno de los factores se puede seguir aplicando otros de los métodos, se aplica.




EJEMPLOS: Factorizar los siguientes polinomios

1.-
Podemos aplicar el primer método, o sea sacar factor común
El segundo factor, o sea el paréntesis, es un trinomio de segundo grado y cuadrado perfecto. Se puede factorizar por el tercero, cuarto o quinto método. Apliquemos el tercero y queda:
=

2.-
Primero sacamos factor común:
Al paréntesis le podemos aplicar el segundo método y queda: =
Y aún más, al segundo paréntesis le podemos volver a aplicar el segundo método:
=
El polinomio de segundo grado que queda en el tercer paréntesis no se puede factorizar. Si probamos el cuarto método, igualando a cero y resolviendo la ecuación queda
 que no tiene solución real.

3.-

Sólo podemos aplicar el quinto método, o sea Ruffini:




1
-12
41
-30
1

1
-11
30

1
-11
30
0
5

5
-30


1
-6
0




=

4.-

Primero sacamos factor común

=
Igualamos a cero el paréntesis y resolvemos la ecuación:  que origina dos soluciones, -3 y –2, por tanto la factorización completa es:
=



Para factorizar un polinomio y calcular sus raíces vamos a seguir los siguientes pasos, cuando sean posibles:

Factor común de un polinomio

Extraer factor común a un polinomio consiste en aplicar la propiedad distributiva.
a · x + b · x + c · x = x (a + b + c)
Una raíz del polinomio será siempre x = 0

Descomponer en factores sacando factor común y hallar las raíces de:

1 x3 + x2 = x2 (x + 1)
La raíces son: x = 0 y x = − 1
2 2x4 + 4x2 = 2x2 (x2 + 2)
Sólo tiene una raíz X = 0; ya que el polinomio, x2 + 2, no tiene ningún valor que lo anule; debido a que al estar la x al cuadrado siempre dará un número positivo, por tanto es irreducible.
3 x2 − ax − bx + ab = x (x − a) − b (x − a) = (x − a) · (x − b)
La raíces son x= a y x = b.


Igualdad notable

1Diferencia de cuadrados

Una diferencia de cuadrados es igual a suma por diferencia.
a2 − b2 = (a + b) · (a − b)

Descomponer en factores y hallar las raíces

1 x2 − 4 = (X + 2) · (X − 2)
Las raíces son X = − 2 y X = 2
2 x4 − 16 = (x2 + 4) · (x2 − 4) = (X + 2) · (X − 2) · (x2 + 4)
Las raíces son X = − 2 y X = 2

2Trinomio cuadrado perfecto

Un trinomio cuadrado perfecto es igual a un binomio al cuadrado.
a2 ± 2 a b + b2 = (a ± b)2

Descomponer en factores los trinomio cuadrados perfectos y hallar sus raíces

La raíz es x = − 3.
La raíz es x = 2.


Trinomio de segundo grado

Para descomponer en factores el trinomio de segundo grado P(x) = a x2 + bx +c , se iguala a cero y se resuelve la ecuación de 2º grado. Si las soluciones a la ecuación son x1 y x2, el polinomio descompuesto será:
a x2 + bx +c = a · (x -x1 ) · (x -x2 )

Descomponer en factores los trinomios de segundo grado y hallar sus raíces

Las raíces son x = 3 y x = 2.
Las raíces son x = 3 y x = − 2.

Descomponer en factores los trinomios de cuarto grado de exponentes pares y hallar sus raíces

x4 − 10x2 + 9
x2 = t
x4 − 10x2 + 9 = 0
t2 − 10t + 9 = 0
x4 − 10x2 + 9 = (x + 1) · (x − 1) · (x + 3) · (x − 3)
x4 − 2x2 − 3
x2 = t
t2 − 2t − 3 = 0
x4 − 2x2 + 3 = (x2 + 1) · (x + ) · (x − )


Factorización de un polinomio de grado superior a dos

Utilizamos el teorema del resto y la regla de Ruffini.

Descomposición de un polinomio de grado superior a dos y cálculo de sus raíces

P(x) = 2x4 + x3 − 8x2 − x + 6
1Tomamos los divisores del término independiente: ±1, ±2, ±3.
2Aplicando el teorema del resto sabremos para que valores la división es exacta.
P(1) = 2 · 14 + 13 − 8 · 12 − 1 + 6 = 2 + 1− 8 − 1 + 6 = 0
3Dividimos por Ruffini.
4Por ser la división exacta, D = d · c
(x −1) · (2x3 + 3x2 − 5x − 6 )
Una raíz es x = 1.
Continuamos realizando las mismas operaciones al segundo factor.
Volvemos a probar por 1 porque el primer factor podría estar elevado al cuadrado.
P(1) = 2 · 13 + 3 · 12 − 5 · 1 − 6≠ 0
P(−1) = 2 · (− 1)3 + 3 ·(− 1)2 − 5 · (− 1) − 6= −2 + 3 + 5 − 6 = 0
(x −1) · (x +1) · (2x2 +x −6)
Otra raíz es x = -1.
El tercer factor lo podemos encontrar aplicando la ecuación de 2º grado o tal como venimos haciéndolo, aunque tiene el inconveniente de que sólo podemos encontrar raíces enteras.
El 1 lo descartamos y seguimos probando por − 1.
P(−1) = 2 · (−1)2 + (−1) − 6 ≠ 0
P(2) = 2 · 22 + 2 − 6 ≠ 0
P(−2) = 2 · (−2)2 + (−2) − 6 = 2 · 4 − 2 − 6 = 0
(x −1) · (x +1) · (x +2) · (2x −3 )
Sacamos factor común 2 en último binomio.
2x −3 = 2 (x − 3/2)
La factorización del polinomio queda:
P(x) = 2x4 + x3 − 8x2 − x + 6 = 2 (x −1) · (x +1) · (x +2) · (x − 3/2)
Las raíces son : x = 1, x = − 1, x = −2 y x = 3/2

Ejercicios resueltos de factorización de polinomios


Factorizar los polinomios

19x4 − 4x2 =
x2 · (9x2 − 4) =
x2 · (3x + 2) · (3x − 2)
2x5 + 20x3 + 100x =
x · (x4 + 20x2 + 100) =
x · (x2 + 10)2
33x5 − 18x3 + 27x =
3x · (x4 −6 x2 + 9) =
= 3x · (x2 − 3)2
42x3 − 50x =
=2x · (x2 − 25 ) =
2x · (x + 5) · (x - 5)
52x5 − 32x =
= 2x · (x4 − 16 ) =
2x · (x2 + 4) · (x2 − 4) =
= 2x · (x2 + 4) ·(x +2) · (x − 2)
62x2 + x − 28
2x2 + x − 28 = 0
2x2 + x − 28 = 2 (x + 4) · (x − 7/2)

Descomponer en factores los polinomios

1
2xy − 2x − 3y +6 =
= x · (y − 2) − 3 · (y − 2) =
= (x − 3) · (y − 2)
325x2 − 1=
= (5x +1) ·(5x − 1)
436x6 − 49 =
= (6x3 + 7) · (6x3 − 7)
5x2 − 2x +1 =
= (x − 1)2
6x2 − 6x +9 =
= (x − 3)2
7x2 − 20x +100 =
= (x − 10)2
8x2 + 10x +25 =
= (x + 5)2
9x2 + 14x +49 =
= (x + 7)2
10x3 − 4x2 + 4x =
= x · (x2 − 4x +4) =
= x · (x − 2)2
113x7 − 27x =
= 3x · (x6 − 9 ) =
= 3x · (x3 + 3) · (x3 − 3)
12x2 − 11x + 30
x2 − 11x + 30 = 0
x2 − 11x + 30 = (x −6) · (x −5)
133x2 + 10x +3
3x2 + 10x +3 = 0
3x2 + 10x +3 = 3 (x − 3) · (x − 1/3)
142x2 − x −1
2x2 − x −1 = 0
2x2 − x −1 = 2 (x − 1) · (x + 1/2)

Factorizar y hallar las raíces de los polinomios

1 2x3 − 7x2 + 8x − 3
P(1) = 2 · 13 − 7 · 12 + 8 · 1 − 3 = 0
(x −1 ) · (2x2 − 5x + 3 )
P(1) = 2 · 1 2 −5 · 1 + 3 = 0
(x −1 )2 · (2x −3 ) = 2 (x − 3/2 ) · (x −1 )2
Las raíces son: x = 3/2 y x = 1

2x3 − x2 − 4
{±1, ±2, ±4 }
P(1) = 1 3 − 1 2 − 4 ≠ 0
P(−1) = (−1) 3 − (−1) 2 − 4 ≠ 0
P(2) = 2 3 − 2 2 − 4 = 8 − 4 − 4 = 0
(x − 2) · (x2+ x + 2 )
x2+ x + 2 = 0
(x − 2) · (x2+ x + 2 )
Raíz: x = 2.

3x3 + 3x2 −4 x − 12
{±1, ±2, ±3, ±4, ±6, ±12 }
P(1) = 13 + 3 · 12 − 4 · 1 − 12 ≠ 0
P(−1) = (−1)3 + 3 · (−1)2 − 4 · (−1) − 12 ≠ 0
P(2) = 23 + 3 · 22 − 4 · 2 − 12 = 8 + 12 − 8 − 12 = 0
(x − 2) · (x2 + 5x +6)
x2 + 5x +6 = 0
(x − 2) ·(x + 2) ·(x +3)
Las raíces son : x = 2, x = − 2, x = − 3.

46x3 + 7x2 − 9x + 2
{±1, ±2}
P(1) = 6 · 13 + 7 · 12 − 9 · 1 + 2 ≠ 0
P(−1) = 6 · (−1)3 + 7 · (−1)2 − 9 · (−1) + 2 ≠ 0
P(2) = 6 · 2 3 + 7 · 2 2 − 9 · 2 + 2 ≠ 0
P(−2) = 6 · (−2)3 + 7 · (−2)2 − 9 · (−2) + 2 = − 48 + 28 + 18 + 2 = 0
(x+2) · (6x2 −5x +1)
6x2 −5x +1 = 0
6 · (x + 2) · (x − 1/2) · (x − 1/3)
Raíces: x = − 2, x = 1/2 y x= 1/3

2 comentarios:

  1. Si tienen alguna duda escribanlas aqui como comentarios asi yo las resolvere...........!!!!!!!!!!
    Attt. Prof. Jonatan

    ResponderEliminar
  2. Si hubieren dudas escribirlas como comentarios aqui........ Att. Prof. Jonatan

    ResponderEliminar